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We present a method of stabilizing unstable periodic orbits in systems whose natural time scales
are on the order of or faster than the time it would take for the experimental implementation of the
Ott-Grebogi-Yorke (OGY) controlling method [Phys. Rev. Lett. 64, 1196 (1990)]. We determine
the controlling perturbation one or more cycles ahead of when it needs to be applied, thereby gaining
the additional time necessary to measure a signal, determine the perturbation, and then implement
it. Formulas for this method of prior iterate control are derived and their utility is demonstrated
numerically on the Hénon map for controlling the unstable orbits of period one and two. The effects
of noise on this control method are examined and the results are compared with a similar application

of the OGY scheme in the presence of noise.

PACS number(s): 05.45.4+b

I. INTRODUCTION

With the publication of the seminal paper by Ott,
Grebogi, and Yorke (OGY) [1] the concept of control-
ling chaos has become part of the lexicon of physicists
and engineers dealing with chaotic nonlinear dynamical
systems. The authors showed that by using small, ju-
diciously applied perturbations the unstable periodic or-
bits, which are dense in a chaotic attractor, could be sta-
bilized. The strength of their approach lies in the preclu-
sion of the necessity for any a priort analytical model of
the chaotic system in order to effect the control. The
information required to construct the controlling pertur-
bations can be extracted from experimental time series
obtained from the unperturbed system. Since the publi-
cation of [1], the OGY controlling algorithm and numer-
ous variations based upon its central concepts have been
implemented numerically and experimentally in a host
of nonlinear dynamical systems ranging from lasers and
electronic circuits to chemical and biological systems. For
excellent, recent review articles see [2] and the references
therein.

The essence of the OGY algorithm is the astute obser-
vation that their are an infinte number of unstable peri-
odic orbits buried in a chaotic attractor and they can be
stabilized by applying conventional control theory tech-
niques [3-5] to the (experimentally or numerically de-
rived) Poincaré map of the dynamical system. By making
the previously constant parameter time dependent, the
dimension of the dynamical systems is raised by one and
in this new dynamical system the old unstable periodic
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orbit is now stable and periodic. Since the appearance of
[1] many theoretical refinements and modifications have
been made to the OGY algorithm. In an accompanying
article Ott, Grebogi, and Yorke [6] detailed how their
basic algorithm for controlling the unstable period-one
orbits presented in [1] could be extended to control un-
stable orbits of arbitrary period. Hunt [7] made a fast
analog implementation of the OGY formula utilizing an
occassional proportional feedback scheme. He success-
fully applied this method to control unstable periodic
orbits of a driven diode resonator and, with Roy et al.
[8], in a chaotic diode pumped solid-state laser system.
Dressler and Nitsche [9] pointed out that with the use
of a single scalar time series to construct an embedding
of the attractor from delay coordinates, the OGY algo-
rithm had to be slightly modified to include the effects
of previous perturbations. In some cases, a parameter
perturbation produces motion off the attractor leading
to a singular OGY perturbation correction. Petrov et
al. [10] and Rollins et al. [11] developed a modified con-
trol formula for such instances. The original formulation
of the OGY algorithm uses the full set of phase space
variables describing the dynamical system to effect the
control. Auerbach et al. [12] have shown that control
can be achieved by projecting down from the full set
of phase space variables to a single time series. This
method, which does not utilize a delay coordinate em-
bedding, involves a history of the previous perturbations
and is applicable to systems where the dimensions of
the phase space is very high, possibly infinite. For the
case of a nonlinear delay-differential dynamical system,
which formally has an infinite-dimensional phase space,
Gavrielides et al. [13] have presented a successful imple-
mentation of the OGY algorithm.

Schwartz and Triandaf [14] adapted the control scheme
of OGY so that an unstable steady state could be tracked
and stabilized over a wide range of values of the control
parameter. With this method Gills et al. [15] were able
to successfully increase the stable steady power output
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of a laser by an order of magnitude. Bielawski et al. [16]
were also able to track and control unstable periodic or-
bits over a range of values of the control parameter by of
modification of the OGY algorithm. In their implemen-
tation, the controlling perturbation was proportional to
the difference in the value of the signal at the present
crossing of the surface of section and its value at the
immediately preceding crossing. Mehta and Henderson
[17] used the OGY algorithm to customize aperiodic or-
bits. Alsing et al. [18] demonstrated how neural networks
could be used as chaotic controllers for a variety of OGY-
based controlling formulas.

In the OGY algorithm, the control is effected through
a parameter perturbation when the chaotic trajectory is
in the neighborhood of the unstable periodic orbit. In
contrast to this approach, stabilization of unstable pe-
riodic orbits can be achieved by the direct addition of
feedback terms to the system. Efficient control has been
obtained when the feedback is of the form of the dif-
ference between the present state of the system and the
desired goal dynamics (for futher details see references in
[2]). The method could be called dissipative control in
the sense that the feedback terms introduce a damping
term in the equations for the linearized error signal be-
tween the system and the goal dynamics. In many cases
there is a range of values for the damping term in which
the linearized error signal is driven to zero, thus bringing
the system to the desired orbit.

Pyragas [19] has recently formulated an interesting
variation of this feedback control. In his scheme, the
feedback term is proportional to the difference between
the present state of the system and the state of the system
one period earlier. This control scheme is a form of auto-
synchronization which stabilizes the unstable period-one
orbit. Socolar and co-workers [20] have proposed an ex-
tension of this method of control via autosynchroniza-
tion, which involves a weighted sum of the signal at all
previous multiples of the period. Such a scheme could be
implemented optically and find potential use in stabiliz-
ing unstable periodic orbits in optical systems where the
time scales are very fast.

The advantage of these dissipative control schemes is
that they can be implemented continuously, as opposed
to the OGY scheme where control is implemented in-
termitantly when the trajectory crosses a surface of sec-
tion. This can be a definite advantage when it comes to
practically implementing the controlling scheme. A dis-
advantage of the dissipative control schemes, albeit of a
more theoretical than practical nature, is that the range
of values for the proportionality constant of the feedback
term which produces control cannot, in general, be de-
termined a priori. One must either find them by direct
experimentation or, if a model of the dynamical system
equations exists, numerically determine them from a cal-
culation of the Lyapunov spectrum. The extension of
this scheme for stabilizing oribits in high dimensional at-
tractors is therefore not as conceptually straightforward
as the OGY method. With respect to this problem the
work of So et al. [21], who extended the control theory
concept of a state observer to nonlinear chaotic systems,
may find applicability.
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In most experimental implementations of the OGY
scheme (including its variants) the natural time scales of
the systems have been below 100 kHz [7,8,22]. Therefore
experimentalists have not been overly concerned with
the time involved in the process of detecting the sig-
nal at some crossing of a surface of section, calculat-
ing the required perturbation, and then applying that
perturbation. If this processing time is on the order of
the natural time scale for the dynamical system, such
as in optical or semiconductor devices, the implemen-
tation of the OGY algorithm becomes problematic. In
this respect, the features of the continuous controlling
schemes described above could prove advantageous for
low-dimensional attractors.

In this paper we are concerned with addressing this
problem of controlling the unstable periodic orbits in sys-
tems whose natural times scales are on the order of or
faster than the time it would take to measure the sig-
nal and implement the standard OGY controlling for-
mula. In order to extend the applicability of the OGY
scheme to such systems with fast time scales, we present
a controlling scheme which utilizes information from a
prior sampling of the signal to stablize the unstable peri-
odic orbit. We determine the required peturbation one or
more cycles ahead of when it needs to be applied, thereby
purchasing the time necessary to measure the signal, de-
termine the perturbation, and then implement it.

The organization of this paper is as follows. In Sec. II
we derive this method of prior iterate control (PIC) in a
iterative fashion from the standard OGY formula. We de-
rive the PIC formula utlizing information one iterate back
from the present signal measurement and then generalize
the formula to one using an arbitrary number of iterates
back. A numerical demonstration of the PIC formulas is
given for the Hénon map. We also investigate the effects
of noise on the PIC method and compare the results to
a similar application of the OGY scheme in the presence
of noise. In Sec. III we discuss the generalization of this
scheme to the problem of controlling higher periodic or-
bits. We give explicit formulas for period-two orbits and
again demonstrate the algorithm on the Hénon map. Af-
ter stating our conclusions, we present two appendixes.
In Appendix A we develop the PIC formula correspond-
ing to the Dressler-Nitsche modification of the OGY for-
mula when delay coordinates are involved. In Appendix
B we relate the OGY and PIC algorithms to the problem
of pole placement in conventional control theory.

II. THE OGY FORMULA AND PRIOR ITERATE
CONTROL METHODS

A. Derivation of formulas

Let us begin by first recalling the derivation of the now
standard OGY controlling formula. For simplicity, we
assume that the chaotic map has one positive Lyapunov
exponent. Suppose we have a mapping £,+1 = F(€.,p),
where £, is a vector of the phase space variables and
p is a parameter whose nominal value is pg. The lin-
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earized map €41 — €r(p) = M [€, — €r(p)] governs
the evolution of small peturbations about the parameter-

dependent fixed point £ (p) in the neighborhood of the
unstable fixed point €r(po) of the unperturbed map.
Here M = D¢F(&r(po),po) is the Jacobian of the map
F evaluated at the fixed point €7 (po) and the nominal
parameter value pg. For small perturbations of p about
Po, the perturbed fixed point can be expressed in terms of
the unperturbed fixed point as £r(p) = €r(po) + Adpn,
where we have defined A = 9€p(po)/dp. Defining
0¢, = €, — EF(po) enables the local mapping to be writ-
ten as

0bni1=ME, + (1 — M) Adp,. (2.1)

Control of the unstable period-one orbit is obtained by
requiring that £,4; has no projection on the unstable
manifold. This can be written as f, - €,+1 = 0, where
S is the unstable contravariant (left) eigenvector of M
with eigenvalue A, (|[Ay| > 1), fu M = A, fu. The OGY
control formula is then given by [1]

’\u fu'5€n
u_l qu

0Pn = :
Pn =3 (2.2)

The OGY formula Eq. (2.2) entails a measurement of
the signal difference &, — £r(po) at the nth iteration of
the map, the construction of §p,, and the immediate ap-
plication of this perturbation in order to effect a change
in €nt+1 — EF(Po), the signal difference at the next it-
erate. In most experimental applications of the OGY
formula, the combined time involved in the process of
signal detection, calculation of the pertubation, and its
subsequent application has been negligible compared to
the average time between successive iterate crossings of
the surface of section. This is because the intrinsic time
scale of most of the experimental applications has been
long compared with the time scale for which fast elec-
tronics can implement the control. However, as the in-
trinsic time scale of the system approaches the time scale
on which control can be effected, the implementation of
the standard OGY method, or even fast analog variants
such as Hunt’s occasional proportional feedback scheme,
becomes problematic. Such situtations can occur in semi-
conductor lasers operating at gigahertz frequencies [13],
antireflection coated semiconductor laser in an external
cavity operating around 100 MHz [23], and ultrafast elec-
tronic circuits [19,20].

The question then becomes whether one can use the
data from iterates prior to the nth to control the n+1 it-
erate. We can accomplish this by writing down Eq. (2.1)
for the n iterate 6§, = M &,_1 + (1 — M) A §p,—1 and
substituting this back into Eq. (2.1). Requiring once
again that f, - €n+1 = 0 yields

(2.3)

opt) = A, [_61,5'1)1 + Au fu-6€n ] ]

Au—1 fu-A
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Equation (2.3) embodies the central features of the PIC
method and is the main mathematical result of this pa-
per.

Equation (2.3) has a form reminiscent to that of the
control formula of Dressler and Nitsche [9]; however, the
two are very different. The Dressler-Nitsche formula
arose in the context of using delay coordinates, which
produced a dependence of §p,, on ép,—1. In addition, the
Dressler-Nitsche formula uses the signal difference §§,, at
the nth iterate as opposed to Eq. (2.3), which uses the
signal difference 6£,,_; at the n — 1 iterate. The proce-
dure of using information “one iterate back” to effect the
control is signified by the superscript (1) on the dp,’s in
Eq. (2.3) and is the justification for calling this proce-
dure prior iterate control. In Appendix A we present the
PIC formula analogous to Eq. (2.3), which applies to the
Dressler-Nitsche modification of the OGY formula.

For purposes of explanation, we may think of our
Poincaré surface of section as being defined as the peaks
of the signal of one of the phase space variables {; € &
(ie., & = 0, & < 0). The OGY formula Eq. (2.2) uses in-
formatlon obtained at the nth peak to control the height
of the n + 1 peak. Implicit in this scheme is the as-
sumption that the total time to detect the signal peak,
calculate the perturbation, and apply the control At, is
much less than the time between peaks t,4+1 — g, ie.,
the time between consecutive crossings of a surface of
section. In contrast, the PIC formula Eq. (2.3) uses in-
formation obtained one peak back, at n — 1, and the
previous pertubation in order to accomplish the same
task. This is schematically illustrated in Fig. 1 for a
generic scalar time series. The cost incurred in using
information one peak back to implement control is man-
ifest in the extra factor of \,, which appears out front
in Eq. (2.3), arising from the use of M? in going from
8€,_11t06€,.41. An equivalent way to view Eq. (2.3) is as
follows. Iterating the indices one step forward, Eq. (2.3)
gives 6p{), = A, [P + (Au Fu - 0€n)/(Au — 1) fu- Al
At the nth iterate we have the detected 51gna.l differ-
ence 6£, and apply the perturbation 5p,. , which has
been calculated from the previous signal diffence 6€,_1.
Therefore, we have all the necessary information to ca.l—
culate Jpn 11 at the nth iterate. The calculated 6p,l {118
then held to the next iterate at time t,,;, where it is
implemented to stabilize the next peak z,2 (see Fig. 1).

One notes that Eq. (2.3) is self-consistent in the sense
that when 6p$.1) approaches zero, the right-hand side re-
produces the OGY formula for control one iterate back
at the n — 1 peak. The OGY formula Eq. (2.2) can be
considered as the particular pole placement solution of
conventional control theory [4], applied to the Poincaré
map about the fixed point (i.e., with the discrete state
space vector &,, = 0€,,), which locally replaces the unsta-
ble eigenvalue A, with zero and leaves the stable eigen-
values unchanged [3]. In the same way, Eq. (2.3) is the
analogous pole placement solution for the enlarged state
space &), = {0&,, 6p,(,1)} (see Appendix B).

We can extend the above result to the case of using
0&,._k to control the n+ 1 peak by deriving a formula for

Jp(k) in a manner similar to the derivation of Eq. (2.3),
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5P$.k) = Au [-— 5P1(;k_)1 + A [—513("_)2 + Au [ Ay [_6p£:k—)k +

Again we see that when Jpg’) = 0 the central bracket
on the right-hand side of Eq. (2.4) reproduces the OGY
formula for the iterate n—k. Figure 2 shows a comparison
of Egs. (2.2) and (2.4) applied to the Hénon map for k =
{0,1,4,5}. Note that for k = 0, 6p(®) is given by the OGY
formula Eq. (2.2). In both instances the perturbations
are constructed from the local map M, which is obtained
from a numerical fit of data taken about the fixed point.

Equivalently, we can view Eq. (2.4) as follows. At the
nth iterate we have the signal difference §¢, and apply
the perturbation 6p$.k), which has been previously cal-
culated using the signal difference 8£,,_x. By shifting
the indices of Eq. (2.4) fromn = {n+1,n+2,...,n +
k}, we have all the necessary information to calculate

{prﬂl,dpff_zz,. .. ’51’,(1’:)-1: at the nth iterate. By keep-
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FIG. 1. Implementation of the OGY and PIC controlling
scheme to a generic scalar time series. (a) In the OGY con-
trolling scheme, a signal z, is measured at time ¢,. The
perturbation ép, is calculated and then applied a short in-
stant later at time t,, + At,. The implicit assumption used
here is that the time between consecutive peaks t.;1 — ¢, is
much longer than the time to implement the control At,. (b)
In the PIC controlling scheme, the signal is again measured
at time t,. With these data the perturbation pr,lil can be
calculated and held until it is applied at t,+1 + Atn4+1, af-
ter the measurement of z,4+;. Note that at time ¢, + At,,
the perturbation 6p$.1), which was previously calculated one
iterate back at z,_,, is being applied.
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Au .fu"sin—
= fu-Ak]"'”]' (2.4)

ing a history of the §¢, and 6p,(.k) used, we can always
maintain a time interval corresponding to k iterations
(i.e., tn — th—k), between the time at which we compute
the perturbation and the time when we need to apply it.

f

B. Controlling in the presence of noise

At this point one might be concerned with the valid-
ity of iterating a linear approximation of the local map
Eq. (2.1) an arbitrary number of times without worry-
ing about higher-order correction terms. Since the PIC
formulas Eq. (2.4) are valid pole placement solutions to
the control problem (see Appendix B) and are linear in
the deviation vector 6€,,_x, the region of control must
be smaller than that for Eq. (2.1) in order for the linear
approximation to hold. We can see this as follows. OGY
defined an effective region of control [1] for a given max-

imum allowable perturbation dpmax as |€%| < €9, where
&n=Ffu-€nand
O = pmae [(1 = A7) fu - A (2.5)
We now consider the PIC formula Eq. (2.4) when control
is just beginning to be initiated. At this point in time
pr‘k_),- =0fori=1,2,...,k and Eq. (2.4) reads 5p$.k) =
AE Ay Fu-08n—k)/[(Au —1) fu - A]. If we keep the same
maximum perturbation dpmax We can derive a formula for
) in analogy with that for the OGY radius ¢ given
above. We find
0 = 2| 7* e (2-6)
Thus the initial region of control for Eq. (2.4) is
|Au|® times smaller than for the original OGY formula
Eq. (2.2). Equation (2.6) states that the use of the prior
iterates 0§, _ to implement control requires the trajec-
tories be |Ay|* closer to the fixed point in order for the
PIC formula to lock on and stabilize the orbit. This
is schematically illustrated in Fig. 3. Equivalently, one
may interpret Eq. (2.6) as follows. Suppose that at the
n — k iterate, the PIC algorithm is implemented over a
region {ik) given by Eq. (2.6). After k iterates the tra-
jectory could have diverged by at most a factor of |A,|*.
Therefore, the trajectory at the nth iterate will still be

contained in the region of size ESO) , applicable to the stan-
dard OGY algorithm.

The smaller region {9'), over which stabilization can
be achieved, validates the use of a linear approximation
Eq. (2.4) for the control formula over this region. In gen-
eral, one may be satisfied with having the largest possible
control region, for a given maximum allowable perturba-
tion, as given by the OGY formula Eq. (2.2). However,
if one needs time on the order of the duration between
successive peaks of the signal in order to implement the
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controlling algorithm, the PIC formula states that this
can be achieved at the sacrifice of having a smaller re-
gion over which control can be initiated. This also im-
plies that the time for the control algorithm to stabilize

the unstable periodic orbit will increase as dk) decreases.

In their original paper, OGY [1] examined the validity
of Eq. (2.5) by adding noise of the form €é,, to the right-
hand side of the Hénon map equations z,,; = A+ dp,, —
22 + ByYn, Yni1 = Tn, with A = 1.29 and B = 0.3. Here
4, was taken to be a zero mean, unit variance Gaussian
random variable and ép, was held fixed at §p, = 0.2. For
bounded noise, i.e., [0% = fy - 6n| < dmax for some fixed

Omax, control was lost when €60 > 650)_

Similary, we can test the validity of the PIC con-
trolling region Eq. (2.6) by examining its tolerance to
noise for different values of k. To account for the de-
pendence of the chaotic transient preceeding control on

8Pmax [1], We scaled the maximum perturbation 6p5,’f,).x

for a given k < kpax via 6pg2x = 6Pmax | Aul®/|Au| o=,
For a given k the Hénon map was iterated under noise-
free conditions until the unstable period-one orbit was
controlled using the usual OGY algorithm Eq. (2.2). Af-
ter the orbit was stabilized for an arbitrary length of
time, Gaussian noise €(®)§,, was added to the equations,
as described above, and the maximum allowable pertur-
bation was set to Jps.’,'lx using 0pmax = 0.2. Iterations
proceeded for a fixed length of time. The system was

deemed partially controlled if a fixed number of consecu-
tive iterates (~ 10) remained within a predefined nar-
row band about the fixed point. If this was not the
case, the system was deemed uncontrolled. For each run
we measured the ratio of the time the system was par-
tially controlled to the total time control was attempted.

FIG. 3. The controlling region £*) for the PIC algorithm
using data k iterates back (i.e., 6€n—x) is |Au|(*) smaller than
the corresponding control region 6(.0) for the OGY algorithm.
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FIG. 4. Plot of In €® vs k for the unstable period-one
orbit of the Hénon map using the PIC algorithm Eq. (2.4),
for k = {0,1,2,3,4} iterates back. €®) is the magnitude of
the Gaussian noise added to the Hénon map at which control,
using the PIC algorithm for k iterates back, is 95% lost.

For each k at least 200 runs were performed in order to
build up statistics. A mean value of €(*) was searched
for in which the above ratio of the (time partially con-
trolled)/(total time control was attempted) was 5%. For
different values of k this let us test the hypothesis that
e(")[S%]J e = |2, 7%¢, where Eq. (2.6) was
used in the last equahty In Fig. 4 we have plotted the
results of In e(*)[5%)] versus k, where kmax = 4. The cen-
tral points are the mean of Ine(*)[5%] and the extreme
points of the error bars indicate plus and minus one stan-
dard deviation. The exponential of the negative of the
slope yields a mean value of |A,| ~ 1.33, which is some-
what smaller than the true value of |A,| = 1.84. This
exercise qualitatively shows that Eq. (2.6) is valid, which
implies that the region of control shrinks by a factor of
|A\u| for each prior iterate for purpose of control. The
discrepancies between the computed and the exact val-
ues of |A,| are most likely due to the imprecise scaling of

Jpgﬂx in order to take into account the longer duration of
the chaotic transient for smaller values of the maximum
allowable perturbation.

III. CONTROLLING HIGHER-ORDER
UNSTABLE PERIODIC ORBITS

In a subsequent paper [6] Ott, Grebogi, and Yorke de-
scribe how to control unstable periodic orbits of arbi-
trary period. For means of illustration we discuss both
the OGY formula and the PIC scheme for period-two
orbits. Taking again our surface of section to be the
peaks of our temporal signal, an unstable period-two or-
bit would be described by consecutive pairs of high and
low peaks corresponding to the two unstable fixed points
of the map £g)(po) and ﬂf)(po). There are then two
local mappings of interest: one from the neighborhood

of E(;) (po) to fg)(po) given by M; (say the high peak
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to the low peak) and from the neighborhood of 6%.)(1)0)

back to £(F)(po) given by M, (the low peak back to the
high peak). This is illustrated schematically in Fig. 5.

In analogy with Eq. (2.1) we can write the local map-
pings as

ni1 — €2 (po) = M, [£,, — € (po)]

+[A® — M,; AD)6p,, (3.1)
€n+2 - 6(,3)(1’0) =M, [€n+1 - E(ﬁ) (Po)]
+A® - M, AP bp,,,,  (3.2)

where we have defined A®) = 6£(') (po)/dp, i = {1,2}.
As a specific example, for two-dimensional maps with
one unstable and one stable eigendirection we would
have M; = ADe® M + AWe (2)f(1) and M, =
22e (1)f(2) + /\(2) (l)f(z), where e, and fﬁ'z, are the
stable and unstable eigenvectors and contravariant eigen-
vectors, respectively, at the fixed point ﬁg) (po) satisfying
fS’Z, es'z, =1 and ,f(') . .(:), = 0. Control is achieved
by projecting the left-hand sides of Egs. (3.1) and (3.2)
off the appropriate unstable directions, i.e., requiring

£ [ni— €2 (po)] = 0and £ [€nr2— € (po)] = 0.
ThlS produces the perturbations

AW D (g, — €D (po)]

5pn = :
P T N0 A® —£@ A )
P AP 1P - [fni1 — €2 (po)] (3.4)

TP Al — D AW '

Equation (3.3) is the OGY perturbation implemented in
going from the high peak to the low peak and Eq. (3.4)
is the OGY perturbation implemented in going from the
low peak back to the high peak.

In practical application to many low-dimensional map-
pings, one can often avoid the use of two explicit map-
pings and instead invoke a local mapping derived from

My Mz

NN

M, M2
e .

FIG. 5. The mappings M; and M for the unsta.ble pe-
rlod-two orbit of the Hénon map. The fixed points £ ¥ and
£ can be thought of as the high and low peak, respectively,
of the period-two orbit. M is then the map from the high
peak to the low peak and M is the map from the low peak
back to the high peak.
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a surface of section defined by say only the high peaks
or only the low peaks. The former would be a direct
mapping from §,, — £(;)(po) to &nt2 — Eg) (po) via the
composite map M2M, and the latter would be a direct
mapping from §,, — G(F?) (po) to &ny2 — fg)(po) via the
composite map M, M,. In the case of PIC applied to
unstable period-two orbits, we found that such squared
mappings from one fixed point back to itself did not work.
We found that we had to use the two separate forms of
perturbations for the transition from one fixed point to
the other and then for the transition back again.

The derivation of the PIC formula for unstable period-
two orbits for £k = 1 (one iterate back) proceeds as fol-
lows. We change indices n — n—2 in Eq. (3.2), substitute
this result into the right-hand side of Eq. (3.1), and set
the projection of this resulting equation onto ff,z) equal
to zero. This produces the perturbation Jps.l). Simi-
larly, to produce 6p$.1_21 we substitute Eq. (3.1) into the
right-hand side of Eq. (3.2) and set the projection of this

resulting equation onto f,(‘l) equal to zero. The forms of
these perturbations are given by

J
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1]

’\1(11) 2) 5. (1)
sp) = p —D® ép,),

n

2D FD . [tass — €2 (p0)] ), (3.52)
1) A (1) 5, (1)
5pn+1 = m { -D Jpn
AP O e, — €2 (p0)] 1, (3.5b)

where we have defined D) = AW M. AW _ £ . A@
and D® = /\S,z)f,(,z) AR — f,(‘l) - A, Prior iterate
control is seen in above formulas by the fact that Jps,”

utilizes information from the n — 1 peak as opposed to
the nth peak, and similary 6p$l1_{)_1 uses information one
peak back.

The generalization of Eq. (3.5) for PIC using infor-
mation k iterates back is straightforward, but notation-
ally cumbersome. It is useful to introduce the symbol
R2(k) = [the remainder of (k/2) mod(2)]. Accordingly,
if k is an odd integer R2(k) = 1, and for k an even integer
R2(k) = 0. With this definition we have, for an arbitrary
integer k,

(1)
59 = 2 [~D@3pM), + AP [~DWsp, + AP [~D@ep + AP [--- + AT [ DRI g0,

n D)

+Aa 0+ R (g — g O o)) 11,

(3.6a)

T T T T T T T T
@ 4+ (b) 4
&
| A
-1 'O_i'{ - -
1515 - _
1 ] i ] ! 1L 1 1 1 1
0 1000 2000 3000 4000 50000 1000 2000 3000 4000 5000 .
n n FIG. 6. Controlling the un-
stable period-two orbit of the
T T T T Hénon map using the PIC al-
1.5} e (d) = gorithm Eq. (3.6), for k iterates
Y ‘ back: (a) k=0, (b) k =1, (c)
1.0} R - k =5, and (d) k = 6. Note that
k = 0 corresponds to the OGY
0.5 - formulas Egs. (3.3) and (3.4).
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y _ A

5p"+1 = 110 [_ D(l)épf"‘) + ,\1(‘1) [_ D('z)(;pflk_)1 + ,\'(‘2) [—D(l)pr,k_)z + ,\1(‘1) [. NS ,\an(k—z)+1] [ — D[Rz(k—1)+1]5p'(1k+)l_k

+ALR:(I¢»1)+1] fglz(k—l)-o-l) [Entrok — ££:7'12(’¢—1)+1] (®0)]] - - 1))

In Fig. 6 we show the application of the PIC formulas
Eq. (3.6) to the unstable period two orbits of the Hénon
map for £ = {0,1,5,6}. Again we note that for larger
values of k, the system takes longer to lock onto the un-
stable orbit of period two. This reflects the reduction in
the size of the region of control by the factor |A,|*, as
discussed in Sec. II.

IV. SUMMARY AND CONCLUSIONS

We have presented an extension of the original Ott-
Grebogi-Yorke formula in which information measured at
a previous n — k crossing the Poincaré section is used for
controlling the unstable periodic orbit at the nth cross-
ing. In this method of prior iterate control the region
of control about the unstable fixed point is |A,|* times
smaller than that corresponding to the standard OGY
formula, where A, is the largest Lyapunov exponent with
magnitude greater than unity. This implies that the PIC
algorithm is proportionally less resistant to the effects
of noise than the OGY algorithm. However, this fact is
compensated by the gain in time of k iterates for which
the perturbation necessary to control the unstable pe-
riodic orbit is known in advance. This makes the PIC
method applicable to systems with a fast natural time
scale where one to a few cycles may be needed for the
detection, calculation, and implementation of the con-
trolling perturbation.
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APPENDIX A: PRIOR ITERATE CONTROL FOR
THE DRESSLER NITSCHE FORMULA

As pointed out by Dressler and Nitsche [9], the trans-
formation from a state vector of phase space variables
for the dynamical sytsem to the delay vector constructed
from a single time series leads to a map of the form
&n+1 = F(€n,Pn—1,Pn). This leads to a linearized map
about the fixed point £r(po) given by

0n11 = A0, +udp, +vipn_1,

where 6§, = &, —€r(po), A = D¢ F(€r(po),PosPo), u =
Dp..F(fF(Po),Po,Po)’ and v = Dp,._;F(fF(Po),Po,Po)-
To avoid the possibility of a singular denominator in the
formula for the perturbation ép,, the authors required
that f, - 66,42 = 0 and 6p,4; = 0. This produces the
formula [9]

(A1)

(3.6b)
[
A
= _A"(A,,f,, utfaole e
fu - v
o Feut e v‘s”"-l) ' (Az)

The PIC formula corresponding to Eq. (A2) follows a
derivation exactly analogous to Eq. (2.3). Shifting the in-
dices of Eq. (A1) from n — n—1 yields 6§, = Ad€n—1+
©8pn_1 + VOpn_z, which is then substituted back into
Eq. (Al). As in [9] we require that f,, - 66,42 = 0 and
0pn+1 = 0. This yields the following PIC formula:

A
= — bl w - 0&n_
0pn Au[’\u(Aufu‘u’i'fu"vf €n—1

+ fu-v 6?1;—2) + 5Pn—1] . (A3)

AuFu-u+fu-v

The first two terms of Eq. (A3) inside the large square
brackets are just the negative of the Dressler-Nistsche
formula Eq. (A2) with the indices shifted from n —
n — 1. Thus analogous to Eq. (2.3), when 6p, = 0, the
terms inside the square brackets simply reproduce the
Dressler-Nitsche formula one iterate back. Therefore, in-
stead of using the data {6&,,8pn—1} to control the nth
peak, the PIC formula Eq. (A3) uses the information
{6€.-1,0Pn—2,0pn—1}, one iterate back, to accomplish
the same task. The extra factor of A\, out front implies
that the control region for the PIC formula is |A,| times
smaller than the corresponding region when Eq. (A2) is
used. A formula analogous to Eq. (2.4) but having the
form of Eq. (A3) can be derived for controlling the n +1
peak with information from k iterates earlier.

APPENDIX B: THE OGY FORMULA AND
CONTROL THEORY

1. The problem of pole placement

As is well known, the OGY control formula for stabi-
lizing an unstable periodic orbit can be derived in just
a few short lines. Given a map £,+1 = F(§n,p), Taylor
expand about the unstable fixed point £ r(po) to obtain
the linearized map

6£n+1 = 45&; +B 6pn’ (Bl)

where 0¢, = €. — &F(Po), A = De¢F(&F(po),Po) (called
M in Secs. II and III above), and B = D, F(&¢F(po), po)-
By requiring that §£,4; has no projection on the unsta-
ble manifold, i.e., fy - 6€,+1 = 0, we easily obtain
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_ f urA- 5€n

f u’ B '
This can be brought into the form of Eq. (2.2) by
noting that f, - A = A, f, and A = 8¢r/8p =
OF(€r(p),p)/0p = A- A + B. Therefore f, - B =
fu-(1—A)-A =(1—-X,)fu-A. The procedure of
linearizing the map about the fixed point is standard in
control theory. The novel feature of the OGY scheme
was the author’s observation that one could apply con-
trol theory techniques about any member of the set of
unstable fixed points, which are dense in the attractor
when the system is chaotic. Since the chaotic system is
essentially ergodic, the system will eventually pass within
a neighborhood of the fixed point for which the control
algorithm can stabilize the trajectory.

The conventional control theory aspect of the OGY
scheme is to pick the perturbation ép in such a way
that eigenvalues of A are apppropriately altered. When
the system is chaotic, at least one eigenvalue of A has
magnitude greater than unity. Thus the perturbation
must be chosen in such a way as to make these unsta-
ble eigenvalues have magnitude less than one. Choosing
0p, = —K7T -6¢,,, where K7 is a row vector of unkowns,
Eq. (B1) becomes

0€ns1=(A— BKT).6¢,. (B3)

The problem then translates into solving for the KT such
that the matrix A — B K7 has only stable eigenvalues.

In control theory this is known as the problem of pole
placement and has a unique solution for a predetermined
choice of the “regulator poles” (stable eigenvalues) if the
n X n controlability matriz C = (B|A-B|... |A™ . B)
has rank n. The solution of the pole placement is given
[4) by KT = (apn—an,...,a1—a;)-T1, where T' = CW,
and

Opn = (B2)

Gn—-1 Qp-2 - Q1

Qp—-2 QGp-3 °°° 1

W = :
a 1 0 0
1 0 0 0

In the above the {ai,...,a,} are the coefficients of the
characteristic polynomial of A,

AT — Al =A" 4+ A" 1+ - +a,.

For a choice of regulator poles {u1,...,un}, the
{ai,...,a,} are the coefficients of the characteristic
polynomial of A — BKT,

IO — ) = A"+ aX™ ™ 4 + .

i=1

2. Examples

For n small, the above computation can be carried
out directly by writing down the characteristic polyno-
mial of A — BK7T involving {K3,...,K,} and choos-
ing them appropriately to give the desired poles. In
the following we assume a general two-dimensional map
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with one stable and one unstable eigenvalue |A,| > 1
and |A,] < 1, respectively. This allows us to write
A=)e,f.+ A,ey fu. The examples below interpret
the OGY and PIC formulas Egs. (2.2) and (2.3) in terms
of a specific choice for the pole placement problem.

a. The OGY formula

Writing B = B,e, + B,e, and KT = K, f, + K, f.,
the matrix AI — (A — BKT) becomes

M — (A - BKT)

</\—/\.,+B,‘K,,

B.K,
B,K, ’

A— A+ B,K,

Since we only need to alter the unstable eigenvalue, one
possible pole placement solution is obtained by setting
K, = 0. The secular equation is then (A — A,) (A —
Au + ByK,) = 0. By choosing K, = /By [ie,
KT = )\,f./(fu - B)] the matrix A — BK7 is arranged
to have eigenvalues A = {),,0} and so is rendered stable.
The perturbation is then given by ép, = —K7 - 8¢, =
~Au(Ffu-6€n)/(Fu - B), which is just the OGY solution
Eq. (B2). Thus the OGY formula is that particular so-
lution of the pole placement problem which sets A, — 0
and leaves A, unaltered. For higher-dimensional maps,
this generalizes to having all unstable eigenvalues of A
beign set to zero and leaving all the stable eigenvalues
unaltered. Clearly this is not the only solution to the
pole placement problem since the necessary and suffi-
cient condition to stablize the unstable periodic orbit is
for the eigenvalues of A — BK7T to have any value of
magnitude less than unity. This latter point accounts
for the robustness which is seen in OGY algorithm. In
[3] the particular choice of the pole placement solution
indicated by the OGY formula is shown to be optimal
in that it minimizes the average time during which the
orbit wanders chaotically before it can be stabilized.

b. The PIC formula

We consider now the PIC formula for one iteration
back Eq. (2.3). In addition to Eq. (B1), we write the

perturbation as 6p£.1) =—KT.6¢6,_1—k 6p,(:ll. Defining
2 _ [ 0&n ~_(AB
e-() A-(29)
= 1] = K
p-(1). ==(%)

we then have the control problem

~ - - ~T ~
6¢,,,=(A—-BK")-é,. (B4)
As in the preceding section, setting K, = 0 yields the
secular equation (A — A,) [(A — Au) (A + k) + BuK,]
0. We obtain Eq. (2.3) by choosing k& = A, and K,
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A2 /B,. Since it was derived from the OGY formula, we
see that the PIC formula Eq. (2.3) is again that solution
of the pole placement problem for which the unstable
eigenvalues of A are set to zero and the stable eigenvalues
are left unaltered.

This above result is true in addition for the PIC for-
mula for 5p$.k) for arbitrary k, Eq. (2.4). This involves
defining additional variables in order to define a compos-
ite state vector 8¢,, in analogy with the above example.
For example, for the PIC case k = 2 one has 6&,1, given

by Eq. (B1), and Jps.z) = —KT -énn_1 — k1 6p$,2_)1 -

1977

ko 6q(221, where we have introduced the new variables

onn = 06,-1 and Jq,(.z) = 6p,(,.2_)1. The control problem
has the form of Eq. (B4) where the composite state vec-
tor is given by JEn = {6&n, Jps.z), 6Nn, 6q,(.2)}. In general,
if the controllability maxtrix formed from A and B has
rank n, then the control problem yields a solution. This
is the case for PIC for arbitrary &, and formula Eq. (2.4)
is that particular choice of solution for which the unstable
eigenvalues of A are set to zero and the stable eigenvalues
are left unaltered.
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FIG. 6. Controlling the un-
stable period-two orbit of the
Hénon map using the PIC al-
gorithm Eq. (3.6), for k iterates
back: (a) k=0, (b) k=1, (c)
k =5, and (d) k = 6. Note that
k = 0 corresponds to the OGY
formulas Eqgs. (3.3) and (3.4).



